Screening of natural oxygen carriers for chemical looping combustion based on machine learning method
编号:134 稿件编号:159 访问权限:仅限参会人 更新:2023-03-23 19:32:10 浏览:183次 张贴报告

报告开始:2021年08月09日 15:30 (Asia/Shanghai)

报告时间:15min

所在会议:[P] 大会报告 » [2] 分会场一:反应器设计及系统优化

暂无文件

摘要
The screening of high-quality oxygen carriers is a key focus in the field of chemical looping combustion. However, the existing screening methods have the problems of high cost and long material design cycles. Here, a machine learning model has been established and successfully predicted the effect of composition, porosity, specific surface area and other physicochemical properties on the redox performance. A database consisting of 190 samples was used to train the BP-ANN algorithm and the SVM algorithm. The SVM algorithm triumphs over the BP-ANN algorithm in that the best model by the SVM algorithm makes predictions with a high coefficient of determination (R2 = 0.961) and a low root means square error (RMSE = 0.014). According to the obtained model, the copper ore was estimated to exhibit high reaction performance in terms of 68% CH4 conversion and 96% CO conversion at 950 oC. We anticipate the machine learning method can be extended to predict the performance of oxygen carriers for other chemical looping applications.
 
关键字
Machine learning, BP-ANN and SVM Algorithm, Oxygen carrier screening, Chemical looping combustion
报告人
宋毅文
研究生 东南大学

稿件作者
宋毅文 东南大学
曾德望 东南大学
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

会议联系人

李志山(昆明理工大学):15288138804,563167750@qq.com

李丹阳(昆明理工大学):18708731314,707324485@qq.com

孙佳妮(会议服务):15201086188,scarlett@aconf.org

 

大会秘书长

祝   星(昆明理工大学):13987129614,zhuxing2010@hotmail.com

李孔斋(昆明理工大学): 13648857565,kongzhai.li@aliyun.com

 

登录 创建账号 注册缴费 提交论文